

(An Autonomous Institute affiliated to CSVTU,Bhilai)Scheme of Examination and Syllabus 2023 Forth Year B. Tech. Civil Engineering 8thsemester

SI. No.	Board of Studies (BOS)	Courses (Subject)	Category	Course Code	Period per Week		Scheme of Examination Theory/Lab		Total Marks	Credit		
					L	Т	Р	ESE	СТ	TA	S	
1	Civil Engineering	SED-IV	PEC	CE105801	3	1	-	100	20	30	150	4
4	Civil Engineering	Professional Elective IV *	HSMC	table IV	2	1	-	100	20	30	150	3
5	Civil Engineering	Open Elective III **	HSMC	table V	3	-	-	100	20	30	150	3
6	Civil Engineering	SED lab	PEC	CE105811	-	-	2	25	-	25	50	1
7	Civil Engineering	Advanced geotechnical engg.	PCC	CE105812	-	-	2	25	-	25	50	1
8	Civil Engineering	Major Project	PSI	CE101594	-	-	16	300	-	150	450	8
	Total			8	2	20	650	60	290	1000	20	

L: Lecture, T: Tutorial, P: Practical, ESE: End Semester Exam

CT : Class test TA: Teacher's assessment

* Table IV: Professional Elective - IV

SI. No.	Board of Studies (BOS)	Courses (Subject)	Course Code
1	Civil Engineering	SA-III	CE105821
2	Civil Engineering	Prestressed Concrete	CE 105822
3	Civil Engineering	Solid Waste Manegement	CE 105823
4	Civil Engineering	Computer Applications in Civil Engineering	CE 105824
5	Civil Engineering	Advanced Environmental Engineering	CE 105825
6	Civil Engineering	Marine Geotechnics	CE105826
7	Civil Engineering	Seismic Design of Structures	CE105827
8	Civil Engineering	Water Shed Management	CE105828

		July 2023	1.00	Applicable for
		July 2023	1.00	AY 2023-24
Member 1	Chairman (BoS)	Date of release	Version	Onwards

(An Autonomous Institute affiliated to CSVTU,Bhilai)Scheme of Examination and Syllabus 2023 Forth Year B. Tech. Civil Engineering 8thsemester

9	Civil Engineering	Open channel flow	CE105829
10	Civil Engineering	Non-conventional Energy source	CE105830

^{* *} Provide at-least 1 value added courses as Open Elective III in Table

* Table V : Open Elective - III

SI. No.	Board of Studies (BOS)	Courses (Subject)	Course Code
1	Civil Engineering	Disaster Management	CE105841
2	Civil Engineering	Construction Management	CE105842
3	Civil Engineering	Ecology and sustainable development	CE105843

		July 2023	1.00	Applicable for
		33., 2323		AY 2023-24
Member 1	Chairman (BoS)	Date of release	Version	Onwards

(An Autonomous Institute affiliated to CSVTU,Bhilai)Scheme of Examination and Syllabus 2023 Forth Year B. Tech. Civil Engineering 8thsemester

Subject Code CE105801	Structural Engineering Design-IV		L = 3	T = 1	P = 0	Credits = 4	
Evaluation Scheme	ESE		CT	TA	Total	ESE Duration	
Lvaluation Scheme	100		20	30	150	4 Hours	
Course	Objectives			Cours	e Outc	omes	
1. Understand th	ne behavior of combined	On su	ccessful	comple	etion of	the course, the	
footings.		studer	nt will be	e able t	0:	,	
2. Understand th	e behavior of retaining						
walls.	C	CO1: Capable of designing combined					
3. Understand th	e behavior of different	footings.					
types of water ta	inks.	CO2: Capable of designing retaining walls.					
7 1	e behavior of different			-	•		
types of bridges.				apable	or desig	gning simple water	
71	e behavior of prestressed	CO4. Capable of designing solid slab					
concrete.	e behavior of prestressed						
concrete.		bridges. CO5: Capable of analyzing					
		prestres	sed con	crete be	eams.		

UNIT I Combined Footings: Limit State Design of Combined Rectangular and Combined Trapezoidal Footings, Introduction to design of strap footing and Raft Foundation.

UNIT II Retaining walls: Design of Cantilever retaining wall with horizontal and sloping backfill, Counterfort Retaining Wall with horizontal backfill.

UNIT III Water tank and staging: Introduction, Design criteria, Design of rectangular and circular water tank, Design of Intze tank, Staging for overhead tank. Circular tank: with flexible / rigid joint between floor and wall (by approximate method), Design of Circular overhead tank with domed bottom and top (membrane analysis), Intze Tank (Membrane Analysis): Dimensions, Design of top dome, Top ring beam, cylindrical wall, middle ring beam, conical dome, bottom dome.

UNIT IV Bridges: Introduction to bridge engineering, types of Bridges, Investigation for bridges, IRC loadings, Design of slab culvert, Design of super structure for solid slab bridge, Design of cantilever slab for T-Beam bridge. Introduction to design of interior panels and girders of a T-Beam Bridge

UNIT V Prestressed Concrete: Basic concepts, classification and types of prestressing, Prestressing systems, Losses in Prestress, Properties of materials, merits and demerits of prestressed concrete, Analysis of beam for flexure, Kern distances and efficiency of Sections

		July 2023	1.00	Applicable for
		July 2023	1.00	AY 2023-24
Member 1	Chairman (BoS)	Date of release	Version	Onwards

(An Autonomous Institute affiliated to CSVTU,Bhilai)Scheme of Examination and Syllabus 2023 Forth Year B. Tech. Civil Engineering 8thsemester

S. No.	Title	Authors	Publisher
1)	Reinforced Concrete Structures	B.C. Punmia	Laxmi Publications
2)	Prestressed Concrete	N. Krishna Raju	New Age Publications

REFERENCE BOOKS:

S. No.	Title	Authors	Publisher
1	RCC Design	Sinha & Roy	S. Chand & Co.
2)	Bridge Engineering	R.K. Raina	

		July 2023	1.00	Applicable for
		July 2023	1.00	AY 2023-24
Member 1	Chairman (BoS)	Date of release	Version	Onwards

(An Autonomous Institute affiliated to CSVTU,Bhilai)Scheme of Examination and Syllabus 2023 Forth Year B. Tech. Civil Engineering 8thsemester

Subject Code CE105821	Structural Analysis-III	L = 2	T = 1	P = 0	Credits = 3
Evaluation Cahama	ESE	CT	TA	Total	ESE Duration
Evaluation Scheme	100	20	30	150	3 Hours

Course Objectives	Course Outcomes
Objective of the Subject:	CO1: To be able to analyze multi story frames by
1. To learn about the approximate methods of	approximate methods
analysis of multistory frames	
2. To learn about the flexibility method of	CO2: To be able to analyze beams and frames by
analysis of structures.	flexibility method
3. To learn about the stiffness method of	CO3: To be able to analyze beams and frames by stiffness
analysis of structures.	method
4. To learn about the finite element method of	CO4: To be able to analyze, beams and frames by finite
analysis of structures.	element method.
5. To learn about the basics of plastic analysis	CO5: To be able to analyze beams and frames by plastic
and methods of plastic analysis of beams and	· · · · · · · · · · · · · · · · · · ·
frames.	method of analysis

UNIT – I:

Approximate Methods:

Analysis of multistoreyed frames for horizontal loads by Cantilever and Portal Methods. Dead and Live Load (Substitute Frame) Analysis for multistoreyed buildings.

[8Hrs]

UNIT - II CO-2

Flexibility Method:

Introduction to Matrix method of analysis, formulation of flexibility matrices, application to simple problems involving not more than two unknowns, analysis of beams, rigid plane frames and pin jointed plane frames. [7Hrs]

UNIT - III:

Stiffness Method: Formulation of stiffness matrices, application to simple problems involving not more than two unknowns, analysis of beams, rigid plane frames and pin jointed plane frames.

[7Hrs]

UNIT - IV CO-4

Finite Element Method: Cartesian and Natural Coordinates, Element DOF's, shape functions for bar, beams, triangular and rectangular element by generalized coordinates and by using Lagrange Polynomials, Pascal's triangle, assembly of stiffness matrix for springs, bar and beam element. [7Hrs]

		July 2023	1.00	Applicable for
		July 2023	1.00	AY 2023-24
Member 1	Chairman (BoS)	Date of release	Version	Onwards

(An Autonomous Institute affiliated to CSVTU,Bhilai)Scheme of Examination and Syllabus 2023 Forth Year B. Tech. Civil Engineering 8thsemester

UNIT-V CO-5

Plastic Analysis: Plastic Hinge Concept, Fully Plastic Moment, Collapse mechanism, plastic analysis of beam and frames. [7Hrs]

TEXT BOOKS:

S. No.	Title	Authors	Edition	Publisher
1)	Theory of Structures, Part – II	Punmia, Jain and Jai	$2^{\rm nd}$	Laxmi Publications
2)	Structural Analysis, a Matrix Approach	Gupta and Pandit.	$2^{\rm nd}$	
3)	Finite Element Analysis	S.S. Bhavikatti	3 rd	New Age International Publishers, New Delhi

REFERENCE BOOKS:

S. No.	Title	Authors	Edition	Publisher
1)	Intermediate Structural Analysis	Wang. C.K	3 rd	Tata McGraw Hill
2)	Structural Analysis	Structural Analysis	2 nd	Pearson Education
3)	Introduction to the Finite Element Method	Desai C.S., Abel J.F		CBS Publishers & Distributors, Delhi.
4)	Introduction to Finite Elements in Engineering	Chandrupatla T.R., Belegundu A.D	5 th	Prentice Hall of India Private Limited, New Delhi.

		July 2023	1.00	Applicable for
		July 2023	1.00	AY 2023-24
Member 1	Chairman (BoS)	Date of release	Version	Onwards

(An Autonomous Institute affiliated to CSVTU,Bhilai)Scheme of Examination and Syllabus 2023 Forth Year B. Tech. Civil Engineering 8thsemester

Subject Code CE105822	PROFESSIONAL ELECTIVE-2 (PRESTRESSED CONCRETE)	L = 2	T = 1	P = 0	Credits = 3
Evaluation	on ESE		TA	Total	ESE Duration
Scheme	100	20	30	150	3 Hours

Course Objectives	Course Outcomes
	On successful completion of the course, the student will be
principles and losses of Prestressed concrete	able to:
structures along with the design of flexural	CO1: Identify various methods of prestressing and their
	advantages.
advantages.	CO2: Analyse the concept of stresses at various stages.
	CO3: Determine the various types of losses of prestressing, IS
	code provisions for Flexural strength of sections
	CO4: Analyze the stresses for composite beams, anchorage-
	bond stress and shear calculation of diagonal tension.
	CO5: Design the poles, pipes and water tanks and understand
	the importance of limit state method.

Unit-1: Methods, Systems and Materials: -

CO₁

Basic principles, methods and systems of prestressing, external, internal, full, partial, pre-tensioning and post-tensioning, standard Fressinet and Gifford Udall cables, quality of concrete and steel, I.S. Code provisions for allowable stresses, Advantages of prestressing and importance of high strength materials.

[7Hrs]

Unit-2: Analysis of Structures for Flexure:-

CO₂

Cases of axial and eccentric prestressing, Stresses in concrete at various stages, lever arm concept and center of pressure, pressure line, kern distances, load balancing cable profiles, critical span, Efficiency of a section.

[8Hrs]

Unit-3: Losses of Prestressing:-

CO3

Various types of losses of prestress and their calculation, loss due to friction, I.S. Code provisions, Elastic shortening due to successive tensioning of cables. Design of section for flexure: Types of flexural failure, Design of Flexural strength of sections as per I.S. Code provisions, Stress-strain relationship.

[8Hrs]

Subject Code	PROFESSIONAL ELECTIVE-2 (PRESTRESSED CONCRETE)	L = 2	T = 1	P = 0	Credits = 3
Evaluation	ESE	CT	TA	Total	ESE Duration
Scheme	100	20	30	150	3Hours

		July 2023	1.00	Applicable for
		July 2023	1.00	AY 2023-24
Member 1	Chairman (BoS)	Date of release	Version	Onwards

(An Autonomous Institute affiliated to CSVTU, Bhilai) Scheme of Examination and Syllabus 2023 Forth Year B. Tech. Civil Engineering 8th semester

Unit-4: Composite Beams:-

CO4

Different types, loading conditions, analysis for stresses, differential shrinkage.

Bond and Anchorage: Bond stress and its significance in pre-tensioned beams, transmission length, and determination of bursting force due to anchor zone stresses and provision of steel according to I.S. Code for prestressed concrete.

Shear: Calculation of diagonal tension and its inclination (including vertical prestressing also) provision of steel according to elastic method and I.S. Code method, advantages of prestressing.

[8Hrs]

Unit-5: Limit State Design:-

CO5

Limit state of serviceability and strength, calculation of ultimate bending moment for given sections, advantages of limit state method over working stress method.

Miscellaneous uses: Analysis and design of poles and circularly prestressed pipes and tanks. **[8Hrs]**

Text Books:

S. No.	Title	Author(s)	Publisher
1.	Prestressed Concrete	Krishna Raju N.	New Age International
2.	Fundamentals of Prestressed Concrete	N.C. Sinha & S.K. Roy	S. Chand & Co.
3.	Prestressed Concrete	K.U. Muthu, Azmi Ibrahim, Maganti Janardhana, M.Vijayanand	PHI Learning Private Limited

Reference Books:

S. No.	Title	Author(s)	Publisher
1.	Design of Prestressed Concrete Structures	T.Y.Lin	John Wiley and Sons, Inc.
2.	Prestressed Concrete	Evans, R.H. and Bennett, E.W.	Champman and Hall, London

IS Code used: 1343: 2012

		July 2022	1.00	Applicable for
		July 2023	1.00	AY 2023-24
Member 1	Chairman (BoS)	Date of release	Version	Onwards

(An Autonomous Institute affiliated to CSVTU, Bhilai) Scheme of Examination and Syllabus 2023 Forth Year B. Tech. Civil Engineering 8th semester

Subject: CE105823	SOLID WASTE MANEGEMENT	L = 2	T = 1	P = 0	Credits = 3
Evaluation	ESE	CT	TA	Total	ESE Duration
Scheme	100	20	30	150	3 Hours

Course Objectives	Course Outcomes			
1: To learn about sources and classification of solid wastes.	CO1: Identify various types of solid wastes and their sources			
2: To learn about composition of solid wastes.	CO2: Examine the physical and chemical composition of wastes			
3: To learn about solid waste management.4: To learn about different techniques and methods to recover energy from solid waste.	CO3: Analyze the activities associated with the management of solid waste CO4: Evaluate the techniques and methods used in recovery of materials and energy from solid wastes			
5: To learn design of landfill for solid waste disposal.	CO5: Design a sanitary landfill for disposal of solid waste			

UNIT - I:

Solid Waste: Definitions, Characteristics, and Perspectives: Types of solid wastes, sources of solid wastes, properties of solid wastes, solid waste management: an overview

CO-1 [8Hrs]

UNIT - II:

Engineering Systems for Solid Waste Management: Solid waste generation; on-site handling, storage and processing; collection of solid wastes; transfer and transport; processing techniques; ultimate disposal; Integrated SW Management concepts

CO-2

[7Hrs]

UNIT-III:

Engineering Systems for Resource and Energy Recovery: Processing techniques; RRR approach, materials-recovery systems; recovery of biological conversion products; recovery of thermal conversion products; recovery of energy from conversion products; materials and energy recovery systems.

CO-3

[8Hrs]

UNIT - IV:

Engineering Disposal of Solid Waste: Dumping of solid waste; sanitary landfills – site selection, design and operation of sanitary landfills – Leachate collection & treatment. Identify methods of solid waste disposal during a site visit and follow safety precautions.

CO-4 [7Hrs]

		July 2023	1.00	Applicable for
		July 2023	1.00	AY 2023-24
Member 1	Chairman (BoS)	Date of release	Version	Onwards

(An Autonomous Institute affiliated to CSVTU,Bhilai)Scheme of Examination and Syllabus 2023 Forth Year B. Tech. Civil Engineering 8thsemester

UNIT-V:

Hazardous Waste Management: Introduction; Concern about Hazardous Waste Management; Characteristics of Hazardous Waste; Transportation and Disposal of Hazardous Waste; Industrial/biomedical waste, E- waste management

CO-5 [7Hrs]

TEXT BOOKS:

S. No	Title	Authors	Edition	Publisher
(1)	Integrated Solid Waste Management,	Tchobanoglous G, Theisen H and Vigil SA	2014 Indian Edition	McGraw Hill Education,
(2)	Waste Management Practices:	John Pichtel,	2014, 2nd Edition	CRC Press,

RFERENCE BOOKS:

S. N	Title	Authors	Edition	Publisher
(1)	Handbook of Solid Waste Management,	Tchobanoglous G and Kreith F	2002,2 nd Edition	McGraw-Hill Education,
(2)	Hazardous Waste Management,	LaGrega M.D., Buckingham P.L. and Evans J.C.,	2010, Reissu e Editio n	Waveland Pr Inc

		July 2023	1.00	Applicable for AY 2023-24
Member 1	Chairman (BoS)	Date of release	Version	Onwards

(An Autonomous Institute affiliated to CSVTU,Bhilai)Scheme of Examination and Syllabus 2023 Forth Year B. Tech. Civil Engineering 8thsemester

Subject Code	Computer Applications in Civil Engineering)	L = 3	T = 1	P = 0	Credits = 3
CE105824	ESE	CT	TA	Total	ESE Duration
CE103624	100	20	30	150	3 Hours

Course Objective	Course Outcomes
This course will enable students to 1. To learn about various computer applications in Fluid Mechanics using programming language C++	
2. To learn about various computer applications in CPM using programming language C++	After studying this course, students will be able to: CO-1 : To be able to prepare computer programs for Fluid
3. To learn about various computer applications in Geotechnical Engineering using programming language C++	Mechanics. CO-2: To be able to prepare computer programs for CPM. CO-3: To be able to prepare computer programs for Geotechnical Engineering. CO-4: To be able to prepare computer programs for
4. To learn about various computer applications in Structural Analysis using programming language C++.	Structural Analysis. CO-5: To be able to prepare computer programs for Structural Design .
5. To learn about various computer applications in Structural Design using programming language C++.	

UNIT- I CO1

Fluid Mechanics Applications

Flowcharts, Algorithms and C++ programs for – Flow through pipes, Computation of friction factor, Hardy Cross method of water supply distribution, Determination of depth of flow and discharge in rectangular and circular open channels. [8Hrs]

UNIT – II CO2

CPM and survey applications

Flowcharts, Algorithms and C++ programs for – Determination of earliest expected time for an activity, Network analysis and determination of critical path, Survey adjustments,

		July 2023	1.00	Applicable for
		July 2023	1.00	AY 2023-24
Member 1	Chairman (BoS)	Date of release	Version	Onwards

(An Autonomous Institute affiliated to CSVTU,Bhilai)Scheme of Examination and Syllabus 2023 Forth Year B. Tech. Civil Engineering 8thsemester

Determination of RL of various points by Rise & Fall and HI methods. [8Hrs]

UNIT – III CO3

Geotechnical Engineering Applications

Flowcharts, Algorithms and C++ programs for – Determination of vertical effective stress at a given depth for any soil profile and water table conditions, Determination of bearing capacity of soil for given soil and water table conditions, Determination of one dimensional preconsolidation settlement under compacted fill, Determination of horizontal and vertical hydraulic conductivities for flow through anisotropic soils.

[8Hrs]

UNIT – IV

Structural Analysis Applications

Flowcharts, Algorithms and C++ programs for – Computation of SF & BM at any desired section of a simply supported beam for any loading conditions, Analysis of portal frames by moment distribution method, Determination of maximum shear force at a section of a simply supported beam subjected to a system of rolling loads, Determination of maximum bending moment at a section of a simply supported beam subjected to a system of rolling loads.

[8Hrs]

UNIT – V

Structural Design Applications

Flowcharts, Algorithms and C++ programs for – Design of Simply supported beams, Design of Columns, Design of Slabs, Design of Foundations. [8Hrs]

Text Books:

S. No.	Title	Authors	Edition	Publisher
1	"Let us C++ "	Yeshwant Kanitkar	Third	BPB Publications
2	"Problem Solving with C++"	Savitch	one	Addison Wesley Publication

Reference Books:

		July 2023	1.00	Applicable for
		July 2023	1.00	AY 2023-24
Member 1	Chairman (BoS)	Date of release	Version	Onwards

(An Autonomous Institute affiliated to CSVTU, Bhilai) Scheme of Examination and Syllabus 2023 Forth Year B. Tech. Civil Engineering 8th semester

S.No.	Title	Authors	Edition	Publisher
1	C++ Interactive Course	Lafore	Tenth	BPB Publications
2	C++ Components and Algorithms	Rober Lafore	fourth	Galgotia Publications

Subject Code	Advanced Environmental Engineering	L = 3	T = 1	P = 0	Credits =3
CE105825	ESE	CT	TA	Total	ESE Duration
	100	20	30	150	3 Hours

Course Objective	Course Outcomes
To develop solutions for Environmental Engineering problems and design system components and processes to meet the specified needs with appropriate consideration for the public health and safety.	On successful completion of the course, the student will be able to: CO1:- Describe Various advance methods of water and air analysis. CO2:- To study advance method of wastewater treatment CO3:- To study tertiary method of wastewater treatment CO4:- Characterizing and Management of Nuclear waste. CO5: Characterizing and Management of Biomedical waste and plastic waste.

Unit-1 Instrumental methods for analysis CO-1

Instrumental methods for analysis of contaminants in air, water and soil — colorimetry, Chromatography, spectroscopy, electrochemical probes Indoor and outdoor air pollution — meteorology — influence of solar radiation and wind fields — lapse rate and stability conditions — characteristics of stack plumes — effective stack height. Characteristics and health effects of various air pollutant particulates (PM2.5, PM10) and gaseous pollutants (CO, NOx, SOx, etc) — their behaviour in atmosphere — monitoring. Photochemical reactions — secondary pollutants. Control devices for Particulate and Gaseous pollutants — applications. **[8 Hours]**

		July 2023	1.00	Applicable for
		July 2023	1.00	AY 2023-24
Member 1	Chairman (BoS)	Date of release	Version	Onwards

(An Autonomous Institute affiliated to CSVTU,Bhilai)Scheme of Examination and Syllabus 2023 Forth Year B. Tech. Civil Engineering 8thsemester

UNIT-II: Advances in waste water treatment CO2

Advances in waste water treatment – Aerobic Suspended growth Process – Process for biological nitrogen removal design criteria – anoxic, aerobic process design – sequencing batch reactor (SBR) – process analysis – Process for biological phosphorus removal – design criteria. Aerobic attached growth Process – Rotating biological contactor, Activated Biofilter – Fluidized bed bioreactor (FBBR) design criteria. Anaerobic suspended and attached growth process – Up flow anaerobic sludge blanket reactor. [8 Hours]

UNIT –III:

Tertiary treatment

CO3

Tertiary treatment – disinfection of waste water – waste water recycling – Water reuse. Advances treatment units – Removal of organic and inorganic colloidal and suspended solids – Removal of dissolved organic constituents – Removal of dissolved inorganic constituents – Filtration – Membrane filtration – Adsorption – Distillation processes. [10 Hours]

UNIT-IV: Management of Nuclear waste CO-4

Nuclear waste: Characteristics – Types – Nuclear waste – Uranium mining and processing – Power reactors – Refinery and fuel fabrication wastes – spent fuel – Management of nuclear wastes – Decommissioning of Nuclear power reactors – Health and environmental effects

[7 Hours]

UNIT-V: Biomedical waste and plastic waste: CO-5

Introduction to biomedical wastes, sources, classification, collection, segregation, treatment and disposal. Biomedical waste management rules E-waste: introduction, e-waste characteristics; e-waste generation, collection, transport, recycling and disposal methods; Effects of e-wastes on the society and environment. E-waste waste management rules Plastic waste: Plastic Waste – Sources, Production, Global and Indian Context; Plastic Waste Management Practices – Plastic management-recycling, energy production, landfilling, other application. [8 Hours]

		July 2022	1.00	Applicable for
		July 2023	1.00	AY 2023-24
Member 1	Chairman (BoS)	Date of release	Version	Onwards

(An Autonomous Institute affiliated to CSVTU,Bhilai)Scheme of Examination and Syllabus 2023 Forth Year B. Tech. Civil Engineering 8th semester

Text Books:

S.No.	Title	Authors	Publisher
1	Waste Water Engineering Treatment Disposal Reuse	Metcalf and Eddy	Tata McGraw-Hill, 2002
2	Air Pollution Control Engineering	Nevers, Noel De	Tata McGraw-Hill, 2002
3	Waste Management Practices: Municipal, Hazardous and Industrial	John Pichtel	CRC Press
4	Integrated Solid Waste Management, Engineering Principles and Management Issues	Tchobanoglous G, Theisen H and Vigil SA	McGraw Hill Education, 2014, Indian Edition

Reference Books:

S. No.	Title	Authors	Publisher
1	Handbook of Solid Waste Management	Tchobanoglou s G and Kreith F	McGraw-Hill Education, 2002, 2nd Edition
2	Hazardous Wastes - Sources, Pathways, Receptors	Richard J. Watts	John Wiley and Sons, 1998, 1st Edition.

		July 2023	1.00	Applicable for
		July 2023	1.00	AY 2023-24
Member 1	Chairman (BoS)	Date of release	Version	Onwards

(An Autonomous Institute affiliated to CSVTU,Bhilai)Scheme of Examination and Syllabus 2023 Forth Year B. Tech. Civil Engineering 8thsemester

Subject Code	MARINE GEOTECHNICS	L = 3	T = 1	P = 0	Credits = 3
CE105826	ESE	CT	TA	Total	ESE Duration
CE103620	100	20	30	150	3 Hours

Course Objective	Course Outcomes
This course will enable students to	After studying this course, students will be able to:
6. To study the marine	CO-1: Analyze distribution of marine sediments along the
sediments.	Indian coasts.
7. To study the geotechnical	CO-2: Analyze geotechnical challenges in case of marine
challenges	sediments.
8. To study the in-situ testing	CO-3: Implement in-situ testing procedures for
procedures.	determining the properties of marine clays.
9. To study the behavior of	CO-4: Analyze behavior of marine soil deposits under
marine soil deposits.	repetitive loading conditions.

UNIT- I CO1

Marine soil deposits: Offshore environment, Offshore structures and foundations, Specific problems related to marine soil deposits, Physical and engineering properties of marine soils [8Hrs]

UNIT – II CO1

Behaviour of soils subjected to repeated loading: Effect of wave loading on offshore foundations, Behaviour of sands and clays under cyclic loading, Laboratory experiments including repeated loading, Cyclic behaviour of soils based on fundamental theory of mechanics, Approximate engineering methods which can be used for practical cases [8Hrs]

UNIT – III CO2

Site Investigation in the case of marine soil deposits: Challenges of site investigation in marine environment, Different site investigation techniques, sampling techniques, Geophysical methods, Recent advancements in site investigation and sampling used for marine soil deposits [8Hrs]

		July 2023	1.00	Applicable for
		July 2023	1.00	AY 2023-24
Member 1	Chairman (BoS)	Date of release	Version	Onwards

(An Autonomous Institute affiliated to CSVTU,Bhilai)Scheme of Examination and Syllabus 2023 Forth Year B. Tech. Civil Engineering 8thsemester

UNIT – IV CO3

Foundations in marine soil deposits: Different offshore and nearshore foundations, Gravity platforms, Jack-up rigs, pile foundations. cassions, spudcans
[8Hrs]

UNIT – V CO4

Numerical modeling of marine foundations subjected to wave loading: Numerical modeling of cyclic behavior of soils, empirical models, elastic-plastic models, FEM analysis of marine foundations subjected to wave loading [8Hrs]

Text Books:

S. No.	Title	Authors	Edition	Publisher
1	"Marine Geotechnics"	H. G. Poulos	Third	Unwin Hyman Ltd
2	"Offshore Structures"	D. V. Reddy and M. Arockiasamy	one	R.E. Kreiger Pub and Co., 1991

Reference Books:

S.No.	Title	Authors	Edition	Publisher
1	Handbook of Marine Geotechnical Engineering	. D. Thomson and D. J. Beasley	Tenth	US Navy, 2012
2	Marine Engineering	C Venkataramaiah	fourth	New Age International Publishers

		July 2023	1.00	Applicable for
		341y 2023	1.00	AY 2023-24
Member 1	Chairman (BoS)	Date of release	Version	Onwards

(An Autonomous Institute affiliated to CSVTU,Bhilai)Scheme of Examination and Syllabus 2023 Forth Year B. Tech. Civil Engineering 8thsemester

Subject Code CE105827	Seismic Design of Structures	L = 2	T = 1	P = 0	Credits = 3
Evaluation Cohomo	ESE	CT	TA	Total	ESE Duration
Evaluation Scheme	100	20	30	150	3 Hours

Course Objectives	Course Outcomes
Objective of the Subject:	CO1: To be able to analyze, design and detail structures
1. To learn about basic principles of seismic	from seismic point of view.
design of structures.	•
2.To learn about the features of earthquake resistant buildings.3.To learn about the Single degree of freedom systems4.To learn about the Free vibrations of two	CO2: To be able to analyze features of earthquake resistant buildings. CO3: To be able to analyze Single degree of freedom systems
1.5 To learn about the Lateral torces due to	CO4: To be able to analyze Free vibrations of two and three degree of freedom systems. CO5: To be able to analyze Free vibrations of two and three degree of freedom systems.

UNIT – I:

Engineering seismology:

Causes of earthquakes; seismic waves; magnitude, intensity and energy release, characteristics of strong earthquake ground motions, Introduction to theory of vibrations - Flexibility of long and short period structures, concept of response spectrum, Seismic zones.

[8Hrs]

UNIT - II

Seismic design concepts:

Desirable features of earthquake resistant buildings, Building forms for earthquake resistance, Seismic design philosophy, Performance of buildings in past earthquakes, Lessons from structural damage during past earthquakes, Equivalent static lateral earthquake force, codal provisions. [7Hrs]

UNIT - III:

Single degree of freedom systems: Response of single degree freedom system, free & forced vibrations.

[7Hrs]

UNIT - IV

Multi degree of freedom structures: Free vibrations of two and three degree of freedom systems. **[7Hrs]**

UNIT-V CO-5

		July 2023	1.00	Applicable for
		July 2023	1.00	AY 2023-24
Member 1	Chairman (BoS)	Date of release	Version	Onwards

(An Autonomous Institute affiliated to CSVTU,Bhilai)Scheme of Examination and Syllabus 2023 Forth Year B. Tech. Civil Engineering 8thsemester

Design of Buildings: Determination of Lateral forces due to earthquake in RCC & Steel framed structures. [7Hrs]

TEXT BOOKS:

S. No.	Title	Authors	Edition	Publisher
1)	Earthquake Resistant Design of Structures	S. K. Duggal	$2^{\rm nd}$	Oxford University Presss
2)	Dynamics of Structures: Theory and Application to Earthquake Engineering		2 nd	Pearson Education Publication
3)	Earthquake Resistant Design of Structures	Pankaj Agrawal & Manish Shrikhande		PHI Learning Pvt. Ltd.

REFERENCE BOOKS:

S. No.	Title	Authors	Edition	Publisher
1)	Design of Earthquake Resistant Buildings	Minoru Wakabayashi		McGraw Hill Publication
2)	Vibration and Structural Dynamics	Timoshenkeo, S.	2^{nd}	VanNostrand Co.
3)	Vibration and Structural Dynamics	Mukyopadhyaya		Oxford & IBH
4)	Structural Dynamics (Theory & computations)	Mario Paz	2^{nd}	CBS Publishers & Distributions New Delhi.

		July 2023	1.00	Applicable for
		July 2023	1.00	AY 2023-24
Member 1	Chairman (BoS)	Date of release	Version	Onwards

(An Autonomous Institute affiliated to CSVTU,Bhilai)Scheme of Examination and Syllabus 2023 Forth Year B. Tech. Civil Engineering 8thsemester

Subject Code	Water Shed Management	L = 2	T =	P = 0	Credits = 3
CE105828			1		
Evaluation	ESE	CT	TA	Total	ESE Duration
Scheme	100	20	30	150	3 Hours

Course Objectives	Course Outcomes
Objective of the Subject: 1. To introduce Understand the characteristics of watershed 2. To understand disaster zoning and hazard assessm Understand the concept, objective, factor effecting in watershed planning ent. 3. To know about the Analyze the effect on watershed hydrology. 4. To understand management during disaster and construction technology for its mitigation. 5. To identify Analyze the effect on watershed hydrology.	 Understand the characteristics of watershed, watershed development problems, soil characteristics and land use practices and socioeconomic factors Understand the concept, objective, factor effecting in watershed planning and hydrological data also prioritization of watershed. Describes the rain water conservation technologies, and understand the integrated watershed management. Analyze the effect on watershed hydrology, and understand the watershed programmer

UNIT – I:

Watershed - introduction and characteristics. Watershed development - problems and prospects, investigation, topographical survey, soil characteristics, vegetative cover, present land use practices and socio-economic factors.

[8Hrs]

UNIT - II

Watershed management - concept, objectives, factors affecting, watershed planning based on land capability classes, hydrologic data for watershed planning, watershed codification, delineation and prioritization of watersheds – sediment yield index. Water budgeting in a watershed.

[7Hrs]

UNIT - III:

Management measures - rainwater conservation technologies - in-situ and ex-situ storage, water harvesting and recycling. Dry farming techniques - inter-terrace and inter-bund land management. Integrated watershed management - concept, components, arable lands - agriculture and

		July 2023	1.00	Applicable for
		34., 2020		AY 2023-24
Member 1	Chairman (BoS)	Date of release	Version	Onwards

(An Autonomous Institute affiliated to CSVTU, Bhilai) Scheme of Examination and Syllabus 2023 Forth Year B. Tech. Civil Engineering 8th semester

horticulture, non-arable lands - forestry, fishery and animal husbandry.

[7Hrs]

UNIT - IV

Effect of cropping systems, land management and cultural practices on watershed hydrology.

Watershed programme - execution, follow-up practices, maintenance, monitoring and evaluation.

[7Hrs]

UNIT-V CO-5

Participatory watershed management - role of watershed associations, user groups and self-help groups.

Planning and formulation of project proposal for watershed management programme including cost-benefit analysis.

[7Hrs]

TEXT BOOKS:

S. No.	Title	Authors	Edition	Publisher
1)	Watershed Management	Das M.M	2 nd	PH Publications
2)	Watershed Management	J.V.S. Murthy	2^{nd}	New Age International Publishers, New Delhi
3)	Watershed Management	Kumar, Suresh et al	3 rd	New Age International Publishers, New Delhi

REFERENCE BOOKS:

S. No.	Title	Authors	Edition	Publisher
1)	Hydrology and Soil Conservation Engineering:	Ghanshyam Das. 2008	3 rd	Including Watershed Management. 2 nd Edition, Prentice-Hall of India Learning Pvt. Ltd., New Delhi.
2)	Structural Analysis	Structural Analysis	2 nd	Pearson Education

		July 2023	1.00	Applicable for
		•		AY 2023-24
Member 1	Chairman (BoS)	Date of release	Version	Onwards

(An Autonomous Institute affiliated to CSVTU,Bhilai)Scheme of Examination and Syllabus 2023 Forth Year B. Tech. Civil Engineering 8thsemester

3)	Introduction to the Finite Element Method	Desai C.S., Abel J.F		CBS Publishers & Distributors, Delhi.
4)	Introduction to Finite Elements in Engineering	Chandrupatla T.R., Belegundu A.D	5 th	Prentice Hall of India Private Limited, New Delhi.

		July 2022	1.00	Applicable for
		July 2023	1.00	AY 2023-24
Member 1	Chairman (BoS)	Date of release	Version	Onwards

(An Autonomous Institute affiliated to CSVTU,Bhilai)Scheme of Examination and Syllabus 2023 Forth Year B. Tech. Civil Engineering 8thsemester

Subject Code CE105829	Open channel flow	L = 2	T = 1	P = 0	Credits = 3
Evaluation Cahama	ESE	CT	TA	Total	ESE Duration
Evaluation Scheme	100	20	30	150	3 Hours

Course Objectives	Course Outcomes
 To provide an understanding of uniform flow in open channel. To provide an understanding of concepts & application for specific energy & Momentum. To provide an understanding of graphical and numerical methods for non-uniform flow. To provide an understanding of hydraulic 	CO1Students are expected to know about open channel & pipe flow. CO2: Students are expected to know about energy & momentum principle CO3: Students are expected to know about Equation, classification and surface profiles for non-uniform flow. CO4: Students are expected to know about classification & equation of hydraulic jumps. CO5: Students are expected to know about differential equation of SVF with increasing & decreasing discharges.

UNIT – I Introduction:-

Difference between open channel flow and pipe flow, geometrical parameters of a channel, continuity equation. Uniform flow: Chezy's and Manning's equations for uniform flow in open channel, most efficient channel section. [7Hrs]

UNIT – II Energy and Momentum Principles:-

CO₂

Critical depth, concepts of specific energy and specific force, application of specific energy principle for interpretation of open channel phenomena, flow through vertical and horizontal contractions.[8Hrs]

UNIT - III Non-Uniform Flow in Open Channel:-

CO3

Equation of gradually varied flow and its limitations, flow classification and surface profiles, integration of varied flow equation by analytical, graphical and numerical methods. [8Hrs]

UNIT - IV Hydraulic Jump, Surges, Water Waves:-

CO4

Classical hydraulic jump, evaluation of the jump elements in rectangular and non-rectangular channels on horizontal and sloping beds, equation of motion for unsteady flow, open channel surge, celerity of the gravity wave.

[8Hrs]

		July 2023	1.00	Applicable for
		July 2023	1.00	AY 2023-24
Member 1	Chairman (BoS)	Date of release	Version	Onwards

(An Autonomous Institute affiliated to CSVTU,Bhilai)Scheme of Examination and Syllabus 2023 Forth Year B. Tech. Civil Engineering 8thsemester

UNIT-V Spatially-varied flow:-

CO₅

Introduction, SVF with increasing discharge, differential equation of SVF with increasing discharges, control point, classification and solutions, profile computation, SVF with decreasing discharge, differential equation for SVF with decreasing discharge, computations. [8Hrs]

TEXT BOOKS:

S. No.	Title	Authors	Edition	Publisher
1)	Fluid Mechanics	A.K. Jain		(Khanna Publication)
2)	Open Channel Flow	Subramanya		(Tata McGraw Hill, New Delhi)

REFERENCE BOOKS:

S. No.	Title	Authors	Edition	Publisher
1)	Open Channel Flow	VenTe. Chow		(McGraw Hill)
2)	Flow Through Open Channels	Ranga Raju		K.G. (Tata McGraw Hill, New Delhi, 1993)
	Experimental Fluid Mechanics (Vol. 2)	Asawa, G.L.		(Nem Chand and Bros., 1992)

		July 2022	1.00	Applicable for
		July 2023	1.00	AY 2023-24
Member 1	Chairman (BoS)	Date of release	Version	Onwards

(An Autonomous Institute affiliated to CSVTU,Bhilai)Scheme of Examination and Syllabus 2023 Forth Year B. Tech. Civil Engineering 8thsemester

Subject Code	Non-conventional Energy source	L = 3	T = 1	P = 0	Credits =3
CE105830	ESE	CT	TA	Total	ESE Duration
	100	20	30	150	3 Hours

Course Objective	Course Outcomes
To provide a survey of the most important renewable energy resources and the technologies for harnessing these resources within the framework of a broad range of simple to state- of -the-art energy systems.	On successful completion of the course, the student will be able to: CO1:- Discuss non-conventional sources of energy and explain the working of different solar energy applications. CO2:- Explore the concepts involved in wind energy conversion system by studying its components, types and performance. explain sources of geothermal energy. CO3:- Explain the sources of Biomass and geothermal energy . CO4:- Illustrate Chemical Energy and ocean energy and explain the operational methods of their utilization. CO5:-Describe the working of magneto hydro dynamic power systems and principles of energy conservation .

UNIT-I: Introduction to Energy Sources:

Energy sources and their availability, non-conventional sources, advantages of renewable energy sources, prospects of renewable energy sources.

Solar Energy: Solar energy collectors – flat plate collectors and concentrating collectors, solar energy storage systems – mechanical, electrical, chemical and electro-magnetic, solar pond, applications of solar energy – solar water heating, solar distillation, solar cooking. **CO-1** [8 **Hours**]

		July 2023	1.00	Applicable for
		30.17 2023	1.00	AY 2023-24
Member 1	Chairman (BoS)	Date of release	Version	Onwards

(An Autonomous Institute affiliated to CSVTU,Bhilai)Scheme of Examination and Syllabus 2023 Forth Year B. Tech. Civil Engineering 8thsemester

UNIT-II: Wind Energy: Basic Principles of Wind Energy conversion Site Selection criterion ,wind Data & Energy Estimation, Types of Rotors, Characteristics, performance & limitations of energy conversion systems. **CO-2** [8 Hours]

UNIT-III:

Bio-Mass

Energy – Conversion Technology, Classification of Plants, Advantages & Disadvantages **Geo-Thermal Energy** – Sources of Geo-Thermal energy, Thermal energy conversion-electrical / Nonelectrical conversion. Advantage & Disadvantages. **CO-3** [10 Hours]

UNIT-IV: Chemical Energy sources: Fuel cells -principle of operation of fuel cell, types of fuel cells –hydrogenoxygen, solid-oxide, alkaline, polymer electrolyte membrane fuel cells, advantages, disadvantages and conversion efficiency of fuel cells, applications of fuel cells. **Energy from the oceans:** Ocean thermal energy conversion-open cycle and closed cycle systems, energy from tides – basic principle of tidal power, components of tidal power plants, single basin and double basin systems, ocean waves – wave energy conversion systems. **CO-4** [7 Hours]

UNIT-V: Magneto Hydro Dynamic (MHD), Thermo-electric and Thermo-ionic Power Generations: Principles of MHD power generation – open cycle and closed cycle – advantages and limitations

Basic principles of thermo-electric and thermo-ionic power generation – advantages and limitations.

Energy Conservation: Economic concept of energy, principles of energy conservation and energy audit, energy conservation technologies, co-generation, waste heat utilization, combined cycle power generation **CO-5** [8 Hours]

		July 2023	1.00	Applicable for
		July 2023	1.00	AY 2023-24
Member 1	Chairman (BoS)	Date of release	Version	Onwards

(An Autonomous Institute affiliated to CSVTU,Bhilai)Scheme of Examination and Syllabus 2023 Forth Year B. Tech. Civil Engineering 8thsemester

S.No.	Title	Authors	Edition	Publisher
1	Non-conventional Energy source	G.D. Rai	2011	5th ed.Khanna Pub
2	Solar Energy	S.P. Sukhatme	-	ТМН

		July 2023	1.00	Applicable for
		July 2023	1.00	AY 2023-24
Member 1	Chairman (BoS)	Date of release	Version	Onwards

(An Autonomous Institute affiliated to CSVTU,Bhilai)Scheme of Examination and Syllabus 2023 Forth Year B. Tech. Civil Engineering 8thsemester

Subject Code	Disaster Management	L = 3	T = 1	P = 0	Credits = 3
CE105841	ESE	CT	TA	Total	ESE Duration
CE103641	100	20	30	150	3 Hours

Course Objective	Course Outcomes
 To know about the nature of disaster Be familiar with the various types of disaster and behaviour of structures in disaster. To know about impacts of disaster on environment Learning Code provisions for disaster risk reduction. Be familiar with Various stages of disaster, environment and its development. 	 CO-1: Able to plan and handle issues related to Nature of disaster in environment. CO 2: Able to know the behaviour of structures in disaster. CO 3: Able to understand the various types impacts of disaster on environment. CO 4: Able to know the Code provisions for disaster risk reduction. CO 5: Able to apply various types of safety & quality Control in Various stages of disaster, environment and its development.

UNIT-I Introduction:

Nature of disasters – natural and other disasters, Earthquakes, floods, draught, cyclones, fire and other environmental disasters. [8Hrs] CO1

UNIT - II Disasters: CO2

Disaster's classification; natural disasters (floods, draught, cyclones, volcanoes, earthquakes, tsunami, landslides, coastal erosion, soil erosion, forest fires etc.); manmade disasters; Behaviour of structures in disaster prone areas, Disaster zoning. [8Hrs]

UNIT – III Disaster Impacts: CO3

Disaster impacts (environmental, physical, social, ecological, economic,political, etc.); health, psycho-social issues; demographic aspects (gender, age, special needs); hazard locations; global and national disaster trends; climate change and urban disasters. [8Hrs]

UNIT – IV Disaster Risk Reduction (DRR): CO4

Disaster management cycle – its phases; prevention, mitigation, preparedness, relief and recovery; structural and non-structural measures; risk analysis, vulnerability and capacity assessment; early warning systems, Post disaster environmental response (water, sanitation, food

		July 2023	1.00	Applicable for
		va., 2020	1.00	AY 2023-24
Member 1	Chairman (BoS)	Date of release	Version	Onwards

(An Autonomous Institute affiliated to CSVTU,Bhilai)Scheme of Examination and Syllabus 2023 Forth Year B. Tech. Civil Engineering 8thsemester

safety, waste management, disease control, security, communications), DRR programmes in India and the activities of National Disaster Management Authority. [8Hrs]

UNIT – V Disasters, Environment and Development: CO5

Factors affecting vulnerability such as impact of developmental projects and environmental modifications (including of dams, land use changes, urbanization etc.), sustainable and environmental friendly recovery; reconstruction and development methods. [8Hrs]

Text Books:

S. No.	Title	Authors	Edition	Publisher
1. 1	Design of Earthquake Resistant Buildings	Minoru Wakabayashi		McGraw Hill Publication
2.	Dynamics of Structures: Theory and Application to Earthquake Engineering	Anil KChopra	2nd edition	Pearson Education Publication

Reference Books:

S.No.	Title	Authors	Edition	Publisher
1. 1	Disasters and development	Cuny F		Oxford University Press Publication
2.	Earth quake engineering damage assessment and structural design	S.F. Borg		
3.	Fundamentals of Vibrations	Anderson, R.A.		Mc Millan Publication

		July 2023	1.00	Applicable for
		July 2023	1.00	AY 2023-24
Member 1	Chairman (BoS)	Date of release	Version	Onwards

(An Autonomous Institute affiliated to CSVTU,Bhilai)Scheme of Examination and Syllabus 2023 Forth Year B. Tech. Civil Engineering 8thsemester

Subject Code	Construction Management	L = 3	T = 1	P = 0	Credits = 3
CE105842	ESE	CT	TA	Total	ESE Duration
CE103642	100	20	30	150	3 Hours

After studying this	
to 10. To study the project life cycle. 11. To study the Strategic planning and Professional construction management 12. To study the value engineering and value planning in construction. 13. To study the material management in construction. 14. To study the various cost indicating another warious CO-1: Able to under various Legal and reg CO-2 Able to under project programming CO-3: Able to apply and technological CO-4: Able to under the construction CO-5: Able to under the construction	y value engineering, Innovation Feasibility in construction erstand the effective use of

UNIT- I CO1

The Owner's Perspective: Introduction-The project life cycle-Major Types of Construction-Selection of Professional Services-Construction contractors-Financing of constructed facilities-Legal and regulatory Requirements-The changing Environment of the construction Industry-The Role Project Managers

[8Hrs]

UNIT – II CO2

Organizing for Project Management: Definition of project management, Trends in Modern Management-Strategic planning and project programming- Effects of project risks on organization -Organization of Project Participants-Traditional designer-Constructor sequence Professional construction management-Owner-Builder-Operation-Turnkey operation Leadership and Motivation for the Project team-Interpersonal behavior in project organization-perceptions of Owners and Contractors.

[8Hrs] UNIT – III CO3

The Design and Construction Process: Design and construction as an integrated system Innovation and technological Feasibility-Innovation and technological feasibility-Design

		July 2023	1.00	Applicable for
		July 2023	1.00	AY 2023-24
Member 1	Chairman (BoS)	Date of release	Version	Onwards

(An Autonomous Institute affiliated to CSVTU,Bhilai)Scheme of Examination and Syllabus 2023 Forth Year B. Tech. Civil Engineering 8thsemester

Methodology-Functional Design-Physical Structures-Construction Site Environment-Value engineering, Value Management and Value Planning-Construction Planning-Industrialized Construction and Prefabrication-Computer –Aided Engineering [8Hrs]

UNIT – IV CO4

Labour, Material and Equipment Utilization: Historical Perspective – Labour Productivity-Factors Affecting Job-Site Productivity-Labor Relations in construction-Problems in collective bargaining-Materials Management-Materials Procurement and Delivery-Inventory Control-Tradeoffs of cost in Material Management-Construction Equipment-Choice of Equipment and Standard production Rates-Construction Processes Queues and Resource Bottlenecks.

[8Hrs]

UNIT – V CO5

Cost Estimation: Costs Associated with Construction Facilities-Approaches to cost Estimation-Type of construction cost estimates- Effects of scaleon construction cost-Unit cost Method of estimation-Historical cost data-Cost indices-Applications of cost Indices to Estimating Estimate based on Engineers List of Quantities-Allocation of Construction costs over time-Estimation of operating costs, concept of pre and post construction cost management.

[8Hrs]

Text Books:

S. No.	Title	Authors	Edition	Publisher
1	Construction Project Management Planning, Scheduling and Control	Chitkara, K.K.		Tata McGraw Hill
2	Project Management: A systems Approach to Planning, Scheduling and Controlling	Harold Kerzner		CBS Publishers

Reference Books:

				Publisher
		July 2023	1.00	Applicable for
Member 1	Chairman (BoS)	Date of release	Version	AY 2023-24 Onwards

(An Autonomous Institute affiliated to CSVTU,Bhilai)Scheme of Examination and Syllabus 2023 Forth Year B. Tech. Civil Engineering 8thsemester

1	Project Management Choudhury, S.	Tata	
1	Project Management	Choudhury, S.	McGraw Hill
2	Construction cost management, learning from case studies	Keith Potts, Taylor and Francis	London and New York

Subject Code	Ecology and sustainable development	L = 3	T = 1	P = 0	Credits =3
CE105843	ESE	CT	TA	Total	ESE Duration
	100	20	30	150	3 Hours

Course Objective	Course Outcomes
Tomake the students learn to deal with environmental and sustainable development aspects	On successful completion of the course, the student will be able to: CO1:- Describe Various aspects of ecosystem and biodiversity CO2:- Nature of environment and role of individuals. CO3:- UnderstandSocial issues in the society. CO4:- Understand principle of sustainable development. CO5:Understand natural resources and climate change.

UNIT-I:Ecosystem and Biodiversity

CO-1

Basic concepts of ecosystem, Structure and Functions of an ecosystem, Energy flow, food chains. Impact of humans on various ecosystems like Forest, Grassland and Aquatic ecosystem Ecosystem Bio diversity, Species diversity, Genetic diversity. Importance of biodiversity and Threats to biodiversity. Conservation of biodiversity. [8 Hours]

UNIT-II: The Multidisciplinary Nature of Environment Studies and its Resources CO2

		July 2023	1.00	Applicable for
		July 2023	1.00	AY 2023-24
Member 1	Chairman (BoS)	Date of release	Version	Onwards

(An Autonomous Institute affiliated to CSVTU,Bhilai)Scheme of Examination and Syllabus 2023 Forth Year B. Tech. Civil Engineering 8thsemester

Objectives and guiding principles of Environmental Studies: Scope andRelevance. Science of Environment: Lithosphere, Hydrosphere, Atmosphere. Need for Public Awareness, Role of Ministry of Environment and Forest (MoEF), Govt. of India, Role of Technical Students in Environmental Protection. Role of individuals in the conservation of natural resources. Natural Resources:.

Hours]

UNIT -III:Social Issues and the Environment

Human population and environment: Definition of overpopulation, Causes and consequences of rapid population growth. Sustainable Development: Energy conservation, Need for energy conservation and Barriers to energy conservation, Methods for promoting energy conservation. Water Conservation: Methods of water conservation, Water Conservation: Strategies to promote water conservation. Rainwater Harvesting- Techniques and Relevance Water ShedManagement. .[10 Hours]

UNIT-IV:Sustainable Development

CO-4

Introduction to Sustainable Development its principles. Economic Growth and Progress. Continuing Poverty. Environmental Threats. Business As Usual Versus Sustainable Development .[7 Hours]

UNIT-V:Environment and sustainability

CO-5

Definition of Renewable and Non Renewable Resources. Use and Over exploitation and the Environmental Effects: Forest Resources, Use and Over exploitation and the Environmental Effects: Surface and Groundwater Resources, Use and Over exploitation and the Environmental Effects: Mineral Resources and Energy Resources. Climate Change. Global warming. Case studies [8 Hours]

Text Books:

S.No.	Title	Authors	Edition	Publisher
1	Environmetal studies	S.K.dha meja	4 th edition(2 011)	Skkataria& sons, New Delhi
2	Environmetal studies	Benny joseph.	(2005)	Tata ,Mcgraw Hill –

		July 2023	1.00	Applicable for
		July 2023	1.00	AY 2023-24
Member 1	Chairman (BoS)	Date of release	Version	Onwards

(An Autonomous Institute affiliated to CSVTU,Bhilai)Scheme of Examination and Syllabus 2023 Forth Year B. Tech. Civil Engineering 8thsemester

Reference Books:

	S. No.		Title	Au	thors	Edition	ı	Publisher	
	1		ogy and sustainable lopment	P S ramal	krishna	2 nd edide on 2015	Pan	erback publications	
Subject Code CE105811		:	Structural Engineering Dra	awing-	L = 2	T = 1	P = 2	Credits = 3	
Facilities	tion Color		ESE		СТ	TA	Total	ESE Duration	
Evaluation Schem		me	25		00	25	25	8 Hours	

Experiments to be performed:

- 1. Details of reinforcement in a simply supported RCC beam (singly reinforced) with the given design data regarding the size and number of bars, stirrups their size and spacing.
- 2. Details of reinforcement in a simply supported RCC beam (doubly reinforced) with the given design data regarding the size and number of bars, stirrups their size and spacing.
- 3. Details of reinforcement in a simply supported RCC beam (T section) with the given design data regarding the size and number of bars, stirrups their size and spacing.
- 4. Details of reinforcement in a one way slab with the given design data regarding the size and number of bars, their size and spacing.
- 5. Details of reinforcement in a two way slab with the given design data regarding the size and number of bars, their size and spacing.
- 6. Details of reinforcement in a stair case with the given design data regarding the size and number of bars, their size and spacing.
- 7. Details of reinforcement for a RCC rectangular column with isolated footing.
- 8. Details of reinforcement for a RCC circular column with isolated square footing.
- 9. Detailing of Combined footings.
- 10. Detailing of Retaining walls.
- 11. Detailing for Water Tanks.
- 12. Detailing for R.C.C. slab Bridge.
- 13. Detailing for R.C.C. T-Beam Bridge.

		July 2023	1.00	Applicable for
		30.7 2023	1.00	AY 2023-24
Member 1	Chairman (BoS)	Date of release	Version	Onwards

(An Autonomous Institute affiliated to CSVTU,Bhilai)Scheme of Examination and Syllabus 2023 Forth Year B. Tech. Civil Engineering 8thsemester

- 14. Detailing for Prestressed Concrete Girder.
- 15. Bar bending schedules for few of the above items.

Field Visit (Minimum 3 times):

Study of complete standard drawing:

- 1. Multistoried building
- 2. Bridge
- 3. Water tank List of Equipments / Machine Required:
- 1. List of Equipments Not Required.

		July 2023	1.00	Applicable for	
		July 2023	1.00	AY 2023-24	
Member 1	Chairman (BoS)	Date of release	Version	Onwards	

(An Autonomous Institute affiliated to CSVTU,Bhilai)Scheme of Examination and Syllabus 2023 Forth Year B. Tech. Civil Engineering 8thsemester

Advance Geotechnical	L = 2	T = 1	P = 2	Credits = 3
Engineering lab				
ESE	СТ	TA	Total	ESE Duration
25	00	25	25	8 Hours
	Engineering lab ESE	Engineering lab ESE CT	Engineering lab ESE CT TA	Engineering lab ESE CT TA Total

Advance Geotechnical Engineering lab

List of Experiments:

- 1. CBR (Un-soaked)
- 2. Plate load test study
- 3. Study of penetration test
- 4. Design and drawing of shallow foundation by Terzagh's
- 5. Design and drawing of shallow foundation by BIS
- 6. Design and drawing of pile foundation (individual)
- 7. Design and drawing of pile foundation (individual)
- 8. Design and drawing of well foundation
- 9. Permeability test using Constant-head test method.
- 10. Permeability test using Falling-head method.

Equipment / Machines / Instruments / Tools / Software Required:

- 1. CBR Apparatus
- 2. Oven
- 3. Constant Head Permeability Test Apparatus
- 4. Following Head Permeability Test Apparatus
- 5. Mechanical Sieve Analysis (Complete Sets of Sieves)
- 6. Soil Sampling Tube, Piston Tube
- 7. Rammer for Compaction
- 8.Soil Extractor

		July 2023	1.00	Applicable for
				AY 2023-24
Member 1	Chairman (BoS)	Date of release	Version	Onwards

(An Autonomous Institute affiliated to CSVTU,Bhilai)Scheme of Examination and Syllabus 2023 Forth Year B. Tech. Civil Engineering 8th semester

- 9. Measuring Jar Cylinder(1000CC)
- 10. Light Compaction Mould
- 11. Heavy Compaction Mould
- 12.MS Excel
- 13. Auto cad Recommended

		July 2023	1.00	Applicable for
				AY 2023-24
Member 1	Chairman (BoS)	Date of release	Version	Onwards